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Galaxy clustering with WFIRST

the ultimate goal: measure expansion history and growth rate with
sub-percent level precision

BAO as standard ruler redshift space distortions
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Uncertainties in the forecasting of RSD constraints
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e small scales contaminated
by non-linear effects, but have
greater statistical precision

® theoretical systematics

implicitly forecasted through
value of Kmax

source: Weinberg et al. 2013
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RSD constraints have great potential

H, flux limit [10-'%erg s-! cm~2]
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e need full P(k) analysis to fully
capture information

® factor of ~3 improvement in
dark energy FOM when using
full P(k) shape measurements
(assuming GR)

e full shape analysis provides
information on neutrino
masses and expansion through
AP test

source: Wang et al. 2010
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A new scheme for modeling RSD

1. Approximate N-body solver with halo formation model
that is both sufficiently fast and accurate enough to extract
galaxy statistics

2. Physical model for galaxy-halo connection that is general
enough to avoid the many unknown aspects of galaxy
formation

3. Simultaneously sample the posterior distribution and
emulate the slow evaluation of the data likelihood
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FastPM: fast simulations of halos
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® an approximate particle mesh N-body solver that enforces
the correct large-scale linear growth at each time step

® written from scratch to exhibit strong-scaling — nearly
linear scaling with the number of CPUs allows for fast
simulations

® benchmarks with 10 time steps produce halo catalogs
that are very close to the exact (N-body) solution

® simulations led by Yu Feng at UC Berkeley, with
publication coming soon

find the project on github: https://github.com/rainwoodman/fastpm
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https://github.com/rainwoodman/fastpm
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FastPM: benchmarks for halo catalogs

Feng et al. 2016 (in prep.)
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the galaxy - halo connection: HOD formalism

® flexible enough to immunize constraints against galaxy
formation uncertainties:

= W

5.

velocity bias for centrals/satellites

central galaxy incompleteness

satellite profile uncertainties

assembly bias —> decorated HODs (see Hearin et al. 2015,
1512.03050)

others?

® populate FastPM halo catalogs using as many features as needed
using Halotools software (led by Andrew Hearin)

® simplified HOD-modeling already successful in extending RSD
constraints to smaller scales: Reid et al. 2014, Guo et al. 2014.

Halotools: https://github.com/astropy/halotools



from simulation to clustering observables
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® fast power spectrum measurements via FFTs via nbodyKit
® population + power spectrum steps take O(seconds)
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Combining the pieces with Cosmo++ emulator

® a2 combined sampler and emulator for data likelihood
using training set of exact results produced during sampling
procedure

® robust error control of emulation errors that are
propagated to posterior probability distribution

® exact solution computed if error model predicts an
unacceptable emulation error

® “learn-as-you-go”: updates error model and training set

given new, exact solutions
Aslanyan et al. 2015, 1506.01079

https://github.com/aslanyan/cosmopp
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Combining the pieces with Cosmo++ emulator

Aslanyan et al. 2015

led by Grigor Aslanyan at
UC Berkeley

applied to CMB likelihoods
in 1506.01079
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Conclusions
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® RSD analyses can provide powerful constraints on dark energy and
General Relativity tests with WFIRST, if theoretical uncertainties can
be controlled

® key challenge: accurate modeling of non-linear effects and galaxy
formation physics on small-scales

® developing a simulation-based RSD model that is both

computationally tractable and sufficiently accurate
1. FastPM simulations produce halo catalogs in O(minutes)

2. HOD population and power spectrum estimation in
O(seconds)

3. Combine these steps in learn-as-you-go emulator to
simultaneously sample the posterior and emulate the non-

linear galaxy power spectrum



FastPM: benchmarks for halo catalogs

Feng et al. 2016 (in prep.)
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~0.18 dex scatter in halo mass corresponds to:
stochasticity ~0.10, 0.18, 0.22 in 10%2, 10'3, 10** Msun/h halos
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Modeling assembly bias with decorated HODs
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the current status of growth rate results

Gil-Marin et al. 2015
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BAO systematics are well-controlled
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simulations indicate reconstruction eliminates systematics to the ~0.1% level

source: Mehta et al. 2011
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nbodykit software tools
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® python tools for N-body simulations + LSS surveys

® parallelized with MPI and designed to run on super-computers

® available tools/features:
® periodic and windowed power spectra
® correlation functions
® FOF halo finder
® sub-halo finder

® running above algorithms in parallel across nodes in batch mode

available at github.com/bccp/nbodykit
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